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1. Introduction

This report presents an analysis of 2D simulations of the universe sourced from the Cosmology

and Astrophysics with MachinE Learning Simulations (CAMELS) dataset, employing deep

learning methodologies to further our comprehension of the fundamental characteristics of our

universe. Our investigation includes training models on individual map types as well as combi-

nations of multiple maps, with a dual focus on attaining optimal accuracy in predicting cosmo-

logical parameters through specific machine learning techniques and evaluating the significance

of individual map types towards overall predictive accuracy. Through doing this, we hope to

leverage machine learning methodologies to develop a deep network capable of discerning the

intrinsic correlations between maps and the underlying parameters dictating their production,

shedding light on the fundamental physical laws governing cosmological parameters and the

resultant universe configurations.

2. CAMELS Simulations and Current Literature

The CAMELS dataset comprises a collection of both hydrodynamic and N-body simulations de-

picting the universe. ”As of January 2024, CAMELS contains 12,903 cosmological simulations:

5,164 N-body and 7,739 hydrodynamic simulations” and over 70TB of data total [1].

The CAMELS simulations serve diverse purposes, among which parameter estimation is a no-

table application. This involves employing machine learning algorithms to approximate general

functions effectively. Specifically, in the context of parameter estimation, such algorithms aid in

constraining parameters, such as cosmological parameters, based on a given set of observations.

For conventional observables like galaxy clustering, the likelihood function underlying the data

is well-defined. Through sampling this likelihood function, constraints on the parameters can

be established [2].

An example of this in current literature is ”The CAMELS Multifield Dataset: Learning the

Universe’s Fundamental Parameters with Artificial Intelligence” [3] which looked at data to

carry out parameter inference within the CAMELS datasets.

2.1. This report

This study, in contrast to the aforementioned comprehensive investigation, focuses solely on a

specific subset of simulations within the CAMELS Multifield Dataset (CMD). Specifically, it

centres on the analysis of IllustrisTNG simulations, characterized as ”magneto-hydrodynamic

simulations that track the evolution of gas, dark matter, stars, and black holes, while also

incorporating magnetic fields” [4]. Furthermore, the study narrows its scope to exclusively

examine the 1P simulations within this dataset, wherein only one parameter is systematically

varied at a time, resulting in the production of 2D maps.

Despite this refinement, the dataset remains substantial, with each map yielding 990 images

or a total of 12,870 images in total. Each image is presented in a 256x256 grayscale format, a

considerable volume of data for analysis.
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3. The Data

The IllustrisTNG 1P simulations which we are looking at are carried out for a series of 13

maps: Gas density - Mgas, Gas velocity - Vgas, Gas temperature - T, Gas pressure - P, Gas

metallicity - Z, Neutral hydrogen density - HI, Electron number density - ne, Magnetic field -

B, Magnesium over iron - MgFe, Dark matter density - Mcdm, Dark matter velocity - Vcdm,

Stellar mass density - Mstar, Total mass density - Mtot. The simulations producing these

maps start from a series of initial conditions:

Ωm Representing the fraction of matter in the universe

σ8 Controls the smoothness of the distribution of matter in the universe

ASN1 & ASN2 Control two properties of supernova feedback.

AAGN1 & AAGN2 Control two properties of black-hole feedback

Table 1: Cosmological parameters used for simulations and as labels for model training. Infor-

mation from: [4]

These parameters will serve as the target labels for training our network, both to try to

develop a model that can learn the underlying physical principles governing the universe sim-

ulations as well as enabling the analysis of the utility of various map types in relation to the

cosmological parameters governing the universe. It is worth noting that among these parame-

ters, two hold greater significance for analyzing our universe (ΩMandσ8), while the remaining

four are primarily instrumental in the generation of simulations but hold comparatively lesser

relevance in practical applications.

4. Methodology

4.1. Dataset manipulation

The image data from the CAMELS simulations comes in the form of multiple .npy image files

and a .txt labels file. These needed to be combined into a useable dataset for model training and

this was done by creating a custom dataset: Camels Dataset. This currently does not inherit a

parent class dataset (eg. Torch Dataset) which could improve efficiencies through processes like

automatic batchloading, GPU acceleration for data manipulation, multithread and subprocess

data loading amongst other features that a collection of numpy arrays does not.

This dataset performs normalisation on the data using a max-scaling normalisation which

can either be for the maximum value of the entire loaded dataset, or for each individual map

type loaded. It also by default performs a random shuffle (although there is an option to turn

this off) on the data before splitting into training, validation, and test data. In carrying out

dataset manipulation (and training) there were also some memory issues, more about this can

be found in the appendix A.
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4.2. Data Augmentation

Data augmentation was looked at as a possibility for improving final accuracy, with several

different data augmentation techniques used including image flipping (horizontal and vertical),

random rotations and random resized crops. The data augmentation was carried out using both

offline and online techniques, explained in A. Neither technique improved test accuracy dras-

tically and for the current model actually decreased test accuracy. This process also increased

processing time, therefore data augmentation was not carried out further. A discussion on why

data augmentation might not have worked can be found in section 5.4.

4.3. Model Selection

As this is an image-to-value regression task, a feedforward deep neural network was used. The

exact shape of this network was determined by hyperparameter tuning. This was done using

scikit learn’s ParameterGrid method [5], which gives all combinations of a given dictionary of

lists of hyperparameters. The determination of the best model was then determined based

on a ’cost’ measure chosen to balance the size of the model (number of parameters) with the

validation loss it achieved. This was done both to counteract overfitting possibilities of very

large models, but also because we are trying to explain a physical phenomenon, so if something

can explain (or predict) a certain physical phenomenon in a ’simpler’ way than something else,

as physicists we tend to prefer the simpler explanation. This is an example of Occam’s razor.

The cost function used was as follows: Cost = loss7 ×Num Params

The total grid search size was well over 4000 combinations of models varying from 25,000

to several million parameters, a very large and somewhat unnecessary number given the very

small improvement in the final costs that the model actually achieved due to this hyperparameter

search. It is worth noting that for this task PyTorch was utilized as opposed to keras. The

reason for this is twofold: The PyTorch library is generally faster than the Keras API (though

not faster than the base theano/TensorFlow libraries) and PyTorch has native Windows GPU

support whereas TensorFlow dropped Windows native GPU support after version 2.10. The

hyperparameter tuning was carried out for just a single map, the Z map type, this was because

carrying out hyperparameter tuning for all maps would’ve taken a very long time and all maps

were of a similar structure and look, so a good set of hyperparameters for one map was likely to

be a good set of hyperparameters on all other maps. A flow diagram of the simplified algorithm

used to carry out the hyperparameter tuning can be seen below:
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Figure 1: Flow chart demonstrating the hyperparameter tuning

Also included in this hyperparameter training were early stopping measures, which ensured

models with low potential were discarded before taking too much processing time. This early

stopping was done based on both the validation loss of the model as well as its ’cost’ with

respect to the best-achieved loss and cost up to that point. K-folds cross-validation was used

to preserve the size of the training data and heuristically is shown to work well [6].

The result of this process was a model of structure:

Figure 2: Network architecture produced by hyperparameter tuning. The first graph is adapted

from a Netron graph [7], where Gemm layers are an alternate name for dense, fully

connected layers.

The model produced by the hyperparameter tuning process was actually very small, some-

thing which was wanted and enforced by the added cost function in the tuning. In doing the

hyperparameter search, the model with the best pure loss not taking into account model size

was also tracked, and this larger model (∼190k params) only outperformed the smaller 95k
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parameter model by ∼2.5% which is a marginal difference for the vast difference in model size.

4.4. Training on a single map

After model selection, full training of the model was carried out. The length of time the model

was trained for varied by the early stopping mechanism, more of which can be found in A, with

a graph of the typical training cycle given in Fig 3.

Figure 3: Graph showing losses on data for model training on map Z, also highlighting the early

stopping algorithm

A separate model was trained on each of the 13 maps. The models were then tested on both

the test data of the map they were trained on as well as the test data of all other maps. This

was done to analyse if any map types were of increased importance in the simulation of the

universe. Using this run, each model’s percentage errors on the individual parameters were

also calculated. This was done to see how close to the true values the models were in a more

meaningful way than just mean squared error and also to see if certain parameters were easier

or harder for the model to predict.

4.5. Training on multiple maps

Following the initial training of all models on a single map, subsequent training sessions were

conducted using multiple maps concurrently. This process entailed the utilization of two distinct

techniques. The first method involved concatenating arrays of images and their corresponding

labels sequentially, followed by feeding them into the model in a randomized sequence. Con-

versely, the second approach entailed incorporating additional maps and their respective data

as supplementary channels to the input layer. Notably, all channels maintained uniform label

values throughout the process.

Both methodologies were implemented across 20 distinct combinations of maps, ranging from

2 to 5 maps in total, resulting in a total of 80 models. As illustrated in Fig. 4, employing the

technique of incorporating extra channels exhibited markedly superior performance in terms of

test loss. Furthermore, this method yielded a notable reduction in running time, amounting to

nearly one-third of the original duration
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Figure 4: Graph showcasing the difference in performance on test loss for different approaches

to adding additional maps to training data

Following the identification of the superior approach for incorporating additional maps into

the training process, a broader exploration of map combinations became feasible. This expanded

investigation encompassed a total of 685 distinct combinations, spanning a range of lengths from

2 maps up to 12 maps. There was skepticism about whether 685 out of 8177 combinations.

(∼8.4%) was enough to draw meaningful conclusions. For this reason, a statistical analysis was

carried out to determine the confidence level 1.

n =
n′

1 + Z2×p(1−p)
E2N

; n′ =
Z2 × p(1− p)

E2
(1)

Where: n = sample size, Z = Z-score, p = population proportion, E = margin of error, N =

total population size Here we assume unknown data so p = 0.5 and we want a 95% confidence

level (standard used in statistical analysis) so E = 0.05.

n′ =
1.962 × 0.5(1− 0.5)

0.052
; n′ = 384.16 (2)

n =
384.16

1 + 0.962×0.5(1−0.5)
0.0528177

; n = 379.88 ≈ 380 < 685 (3)

1Note, the formula used here does have some assumptions: Normalised data, independent data, random sam-

pling, and a known population standard deviation. However, as an approximation for testing whether we

have enough data to be significant, this formula is sufficient.
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Therefore conclusions drawn from our sample size of 685 are well within the 95% confidence

level to be true of the full dataset, so we can meaningfully say things about the full dataset

from our sample. Another added reason why we can draw meaningful conclusions is that the

sampling is random, but also representative of the entire set, with lengths of all combinations

included.

To get around this potential issue as well, the multiple map analysis was also carried out for

just 2 map combinations. This was done because there are a lot fewer combinations of these

(78) so all of them could be tested in a reasonable time frame and data analysis could be done

for this entire population.

5. Results

5.1. Single Map

Test loss, calculated as mean squared error from true values can be seen in Fig. 5a for each model

trained on a single map type. From this figure we can see the model trained on map MStar

achieves the lowest test loss at around 0.06 or around 6% error on the physical variables (or a

94% accuracy). This is a reasonably small error and shows that our model is learning something

about the parameters simulating this map. Some of the other models trained on other maps do

significantly worse, with anything up to a 16% total error. This could be taken as a sign that this

map (or similarly badly performing ones) are less useful for predicting the physical variables of

the simulations. However, having run this multiple times throughout building the code, which

map performs well or badly for this test seems to be completely random, changing very often.

This can be especially seen for map Z on which the hyperparameter training was carried out on.

For the model in Fig. 5a, with the same architecture with all the same hyperparameters and

model architecture performs achieves a test loss of 0.14, whereas in Fig. 3, the model trained

on map Z achieves a loss of under 0.08, a quite substantial difference in performance.

Following this investigation, the test loss for a model trained on one type of map and then

tested on all other maps was generated as can be seen in Fig. 5b. This again shows some

randomness and also highlights that just because one map does well on its own test data does

not mean it will perform well on other maps. It also shows the complete opposite as well, just

because the performance was poor on its own test data, does not mean it will perform badly on

other map types (eg. map: ne). From Fig. 5b we also cannot draw any conclusions about which

maps generalise better to being able to predict the physical variables for other maps, with no

map drastically outperforming any others.
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(a) Test losses on maps trained on for models

trained on single maps

(b) Average test loss for models trained on one map

and tested on all other maps

Figure 5

Using all these trained models, the percentage error on the individual physical variables was

also calculated using the formula: Error =
|ypredicted−ytrue|

ytrue
∗ 100%. The results of this can be

seen in Fig. 6, showing that all models were good at predicting σ8 the parameter controlling

the smoothness of matter and were particularly bad at predicting ASN1&ASN2 the parameters

controlling supernova feedback. Following making this graph, it was also theorised whether the

variance in the test data physical variables also had anything to do with the error in certain

values and while we can see some correlation, it is definitely not the main reason for the models

doing well on certain variables and very poorly on others.
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Figure 6: Left: Variance in test data labels. Right: % Error of model predictions on the physical

variables for all models on their own test data

5.2. Multiple Maps

Following the investigation into models trained on single maps, 685 different maps were then

trained on different multiple-map combinations. Fig. 7 shows the 20 best performing maps on

test loss for all 685 maps tested. We can see that the best maps here perform marginally better

than the single map with an error at best of 4% as opposed to 6% in Fig. 5a. Considering

this was performed for a full 685 combinations and the best test error of any combination was

only 2% better than a single map, even when being fed up to 12 maps at a time, explains why

data augmentation was not helping for this dataset. One possible reason for this is explored in

section 5.4.
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Figure 7: 20 Best combinations by test loss from the 685 total tested combinations

The utility of each map type was also looked at for multiple map combinations through 2

different methods, the number of occurrences of each map type in the best 50 map types as

well as the average loss of all tested combinations that include a specific map type as can be

seen in Fig. 8. From the occurrences graph some differences between the best maps can be

seen, however when plotting the average loss for all 685 tested map combinations so we get a

reasonable confidence level we can see very little variation between the map types, suggesting

one map is not significantly better than any other.
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Figure 8: Comparing usefulness of map type, Left: The number of occurrences of each map

contained within multiple map combinations for the 50 best performing combinations.

Right: Average loss on all models trained on all map combinations containing each

map type

An investigation into whether an increasing number of maps improved test loss (and therefore

accuracy) was also carried out and can be seen in Fig. 9. For number of maps 1 to 11 there

is no clear trend, however we do see a sudden drop off in loss for 12 maps. This could suggest

that 12 maps does actually improve performance, but the difference in error is only around 2%

from the other number of maps which is not substantial enough to call statistically significant.

Figure 9: Average test loss with increasing number of maps included in training

5.3. 2 Map Only

As described in 4.5, the same analysis as Fig. 8 was also carried out for only 2 map combinations.

This can be seen in Fig. 10 where much more of a difference between the map types can be seen

with maps: ne, Mcdm and B all occurring most frequently in the best map combinations and

all having some of the lowest errors as well. The difference in this error is only ∼1-2% which is
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still small, so to claim any of these maps are significantly better than any others would still be

unwise here without further justification and testing.

Figure 10: Comparing usefulness of map type for 2 map combinations only, Left: The num-

ber of occurrences of each map contained within 2 map combinations for the 50

best performing combinations. Right: Average loss on all models trained on 2 map

combinations containing each map type

5.4. The issue with accuracy

The main issue in training the models to achieve a good error (under 5% for all parameters)

could be the lack of labels rather than the lack of maps. There are 12870 maps to train the

model on which is large enough to train a good model, however, all these images are only formed

from 66 different sets of labels, some with a very small variance in their values across all 66

different labels. This is a very small number and so training a model on this little amount of

label data leads it to have a decreased accuracy. This is also the reason data augmentation does

not work, there are already enough input images and we cannot carry out data augmentation

on the labels as this would produce different maps.

6. Summary

In this paper, we have trained multiple neural networks on the CAMELS illustris 1P dataset

achieving a best accuracy on the physical simulation parameters of ∼ 4% from training models

both on single map types as well as multiple maps at the same time. We also looked at whether

certain map types had greater importance or utility in predicting the physical parameters and

found that no map had a significantly raised importance.
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A. Appendix: Algorithms and Issues

Early Stopping Algorithm:

The early stopping algorithm consisted of two distinct components. Firstly, early stopping

is based on the model’s failure to demonstrate improvement in validation loss. Secondly, dur-

ing hyperparameter tuning, the algorithm halted the training of models with low potential to

prevent them from consuming excessive computational resources.

In the first method, a patience variable was assigned, representing the number of epochs the

model would undergo training regardless of a lack of improvement in validation loss. This value

would reset each time the model achieved a validation loss either lower than or within a small

tolerance of the previous best validation loss.

The second method also utilized a patience parameter, but this time the algorithm waited for

the the model to get a cost metric (as detailed in the main text) lower or within a slightly larger

tolerance than that of the previous best model. This approach ensured that models exhibiting

either significantly higher loss compared to the best previous model or those with exceedingly

large parameter counts were not trained excessively, thereby speeding up the hyperparameter

tuning process.

Online vs Offline data augmentation:

Online data augmentation was implemented to apply augmentations to maps within each

training batch, with a specified probability. Consequently, every map received different aug-

mentations each time a batch was formed. This approach offers the advantage of avoiding

dataset size inflation to alleviate memory and disk space constraints. However, it necessitates

training models for more epochs to achieve comparable effects compared to offline data aug-

mentation.

Offline data augmentation, conversely, entails applying the same augmentation techniques to

all images simultaneously and then appending them as additional images to the dataset. This

method substantially augments the number of maps available for model training.

Memory Issues:

While still only using a small proportion of the entire CMD dataset, we still have a large

amount of data and this did lead to some memory issues. The size of the data files we are using

here are:

256px× 256px× 4 byte greyscale float/1e6 ≈ 0.26mb per image

990 images per map× 0.26mb = 257.4mb per map

13 maps total× 257.4mb ≈ 3.3Gb total size

For this project, I am running 16Gb of RAM which means when performing data ma-

nipulations using the above dataset there were occasional RAM overflows or when utilizing

GPU accelerated training on a CUDA enabled NVIDA 4060 laptop GPU with 8Gb of vRAM

there were occasional CUDA vRAM overflow errors. This was accounted for and mitigated
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by manually triggering python garbage collection after deleting variables that were no longer

needed to free up RAM space as well as manually clearing the vRAM cache using pytorch’s

torch.cuda.empty cache() method. While this helped reduce the frequency of the errors, it did

not completely solve the problem, especially if I was trying to do anything else on my laptop

while the code was running which could use up additional memory space. Therefore I also im-

plemented an autosave feature, where after every milestone (whether that be hyperparameter

config tested or model trained on specific map combination) the important information for that

run was saved to a file using a pickle dump. This ended up being helpful not just for memory

crash issues, but also meant that runs could be stopped and reloaded without redoing what had

already been done in a previous run.
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